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Abstract
The inversion method to derive the quantum kinetic equation is extended to the
case of an inhomogeneous system. Within the closed-time-path formalism,
the source is introduced to probe the (Fourier transform of the) Wigner
distribution function and the equation of motion for the Wigner function is
derived perturbatively by the inversion formulae. The equation of motion has
the form of the generalized Boltzmann equation, which is non-local in space
and time. For the obtained kinetic equation, the local conservation laws of
number, energy and momentum are confirmed.

PACS numbers: 0530, 0365, 0520, 1110

1. Introduction

Since the theory of Kadanoff and Baym [1], many works have been performed based on the
Green function approach to derive the quantum kinetic equation (QKE) or the generalized
Boltzmann equation. Most of these works rely on the Kadanoff–Baym ansatz [1] or its
generalized version (GKB ansatz) [2]. The basis of the ansatz, however, is not completely
clarified and hence the definitions of the particle in these theories are not clear. An alternative
approach is the counter-term method: in the framework of the closed-time-path (CTP)
formalism [3, 4] or of the thermo-field dynamics [5], the counter-term is subtracted from
the 2 × 2-Lagrangian and the self-consistent condition is adopted to determine the counter-
term. The self-consistent condition leads to the QKE. This approach is free from the ansatz,
but the ambiguity remains in the choice of the self-consistent condition.

In the preceding papers [6, 7], we presented a new approach to derive the QKE using the
inversion method. In this approach, we first calculate the expectation value of the number
operator under the existence of the probing source, and obtain the number as a functional of
the source. The obtained functional relation is inverted to express the source as a functional of
the number, and then the equation of motion (EoM) of the number is obtained by removing the
source. The method of introducing the source is a crucial point in the method and the source
we have used is motivated by the dissipative counter-term of Lawrie [3]. Such an approach has
an advantage that, since the expectation value of the number operator is directly calculable at
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the first step, the number appearing in the QKE is well defined, and that the EoM is determined
by simply removing the source after the inversion, without arbitrariness of the condition.

In this paper, we extend the method to the case of a system prepared with the
inhomogeneous density matrix at some initial time. A systematic investigation of the QKE
in the inhomogeneous situation can be seen in [8], where the extension of the thermo-
field dynamics in the homogeneous case [5] to the inhomogeneous one is discussed and
the Markovian QKE is obtained. Our previous results [6, 7] can similarly be extended to
the inhomogeneous case, but the resulting QKEs become non-Markovian. Moreover in our
method, systematic evaluation of the conserved currents can be performed.

After a brief description of inversion method in section 2, it is applied in section 3 to the
system which is initially inhomogeneous. We introduce a local probing source for the (Fourier
transform of) the Wigner distribution function (WDF) by extending the source of [6] to the
two-point form. Then we will find that the inversion method is straightforwardly applicable.
The calculations are carried out up to the second order in interaction and the obtained EoM of
the WDF has the form of a QKE which is non-local in both time and space. The QKE is reduced
to a more familiar form in the weakly inhomogeneous case where the gradient expansion can
be carried out.

In section 4, the local conservation laws of number, energy and momentum densities are
confirmed. From the symmetries of the Lagrangian, conserved current is derived by Noether’s
theorem, and it is expressed as functional of the WDF with the aid of inversion in section 3. The
QKE obtained in section 3 turns out to guarantee explicitly the conservation of these currents.

2. Inversion method

The inversion method [9,10] is a simple technique to obtain the EoM of expectation values of
an arbitrary operator. For any operator Q̂ of interest, the expectation value Q(t) at the time t
is first calculated under the existence of some probing source J , which is time dependent in
general. ThenQ(t) becomes a functional of J and a function of t ;Q(t) = f [t; J ]. By solving
the relation inversely for J , the source J is expressed as a functional ofQ and a function of t ;
J (t) = g [t;Q]. The removal of the source at this stage yields an equation to determine the
temporal change of Q, i.e. the EoM. This inversion process can be carried out perturbatively
using the following ‘inversion formulae’ [10].

Assume the perturbative expansion of Q as a functional of J ; its inverted series are also
obtained perturbatively,

Q(t) = f [t; J ] =
∑
n

λnfn[t; J ] J (t) = g[t;Q] =
∑
m

λmgm[t;Q] (1)

where λ is a small parameter of the expansion. Then in an identity Q(t) = f [t; g [Q]], the
rhs is expanded in terms of λ, and comparing both sides in each order of λ the relations among
gms and fns are obtained, which leads to the ‘inversion formulae’:

g0[t;Q] = f −1
0 [t;Q] (2)

g1[t;Q] = −
∫

dt ′ f (1)0

−1
[t, t ′;Q] f1[t

′; g0] (3)

g2[t;Q] = −
∫

dt ′ f (1)0

−1
[t, t ′;Q]

(
1
2

∫
ds ds ′f (2)0 [t ′, s, s ′;Q] g1[s;Q] g1[s ′;Q]

+
∫

ds f (1)1 [t ′, s;Q] g1[s;Q] + f2[t ′; g0[Q]]

)
(4)
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where we have used the abbreviations for k = 1, 2, . . . ,

f (k)n [t, s1, s2, . . . , sk;Q] ≡ δkfn[t; J ]

δJ (s1)δJ (s2) · · · δJ (sk)
∣∣∣∣
J=g0[Q]

(5)

and f (1)0

−1
is defined by

∫
dt ′ f (1)0

−1
[t, t ′;Q]f (1)0 [t ′, s;Q] = δ (t − s).

In the following, we apply the inversion method to derive the EoM of the WDF. There,
the inversion formulae are slightly extended to include wavenumber indices in addition to the
time arguments.

3. Derivation of QKEs: generalized Boltzmann equation

3.1. Introduction of probing source

The system to be considered is the same as in [6, 7]: a non-relativistic boson field described
by the Hamiltonian Ĥ = Ĥ0 + Ĥint with

Ĥ0 =
∑

k

εkψ̂
†
k ψ̂k Ĥint = λ

4

∑
k,k′,q

ψ̂
†
k+qψ̂

†
k′−qψ̂kψ̂k′ . (6)

What we are going to derive is the EoM of the WDF

fK(X, t) =
∫

d�x

V
e−iK·�x

〈
ψ̂†

(
X − �x

2
, t

)
ψ̂

(
X +

�x

2
, t

) 〉
(7)

where ψ̂(x) = 1√
V

∑
k eik·xψ̂k and the angular bracket implies the average over the initial

density matrix; 〈 · · · 〉 = Tr ρ̂ · · ·. The problem is equivalent to deriving the EoM of the
correlation function defined as the Fourier transform of the WDF:

zk,q(t) ≡
〈
ψ̂†

q (t)ψ̂k(t)
〉
=
∫

dx e−i(k−q)·xf k+q
2
(x, t). (8)

By the second equality, the EoM of z can easily be reduced to that of the WDF (7), and we
will see that the EoM becomes rather simple when we work with z.

Equation (8) can be represented by path integration as

zk,q(t) ∝
∫

[ dψ1 dψ2]ψ∗
q (t)ψk(t)e

i
h̄

∫ t
tI
ds (L(ψ1)−L(ψ2))

〈
ψ1,I

∣∣ ρ̂ ∣∣ψ2,I
〉

(9)

whereL is the Lagrangian corresponding to the HamiltonianH andψ1 andψ2 are respectively
introduced as integration variables due to the forward and backward time evolution operators,
and satisfy the boundary conditions ψ2(tI) = ψ2,I and ψ1(tI) = ψ1,I. This type of formulation
is called the CTP formalism [11, 12].

In this paper, the initial distribution ρ̂ is assumed to be inhomogeneous, but, for simplicity,
no correlation among the fields is considered. The initial correlations can be treated similarly
as in [7] by introducing the imaginary time path.

In order to consider an inhomogeneous system, we introduce the local probing source
throughout the time evolution in (9). As in the case of a homogeneous system [6, 7], if we
introduce it naively in the CTP formalism [10,12], we are faced with the difficulty that z does
not depend on J in the lowest order of perturbation. To overcome this problem, according to
the method in [6], we first write the free part of the Lagrangian in (9) in the quadratic form
L0(ψ1)−L0(ψ2) = ∑

ij ψ
∗
k,iDkq,ijψq,j , and then the source Jk,q is built into the matrix Dk,q

as

Dk,q =
(
(ih̄∂t − εk)δk,q + iJk,q(t) −iJk,q(t)

−iJk,q(t) −(ih̄∂t − εk)δk,q + iJk,q(t)

)
. (10)



2968 J Koide

Now zk,q and Jk,q play the role of Q and J of (1), respectively. Thus we calculate the
unperturbed propagator, which is essentially the inverse of (10), to construct the perturbative
expansion of (9).

3.2. Unperturbed propagator

In general, the Green function in CTP formalism can be represented by the following 2 × 2
matrix form:

Gk,q(t, s) ≡ − Tr ρ̂

(
T ψ̂k(t)ψ̂

†
q (s) ψ̂†

q (s)ψ̂k(t)

ψ̂k(t)ψ̂
†
q (s) T̃ ψ̂k(t)ψ̂

†
q (s)

)
c

= θ(t − s)
(
hk,q(t, s) kk,q(t, s)

hk,q(t, s) kk,q(t, s)

)
+ θ(s − t)

(
k∗

q,k(s, t) k∗
q,k(s, t)

h∗
q,k(s, t) h∗

q,k(s, t)

)
(11)

where the subscript ‘c’ implies the connected part and

hk,q(t, s) ≡ −〈ψ̂k(t)ψ̂
†
q (s)〉c kk,q(t, s) ≡ −〈ψ̂†

q (s)ψ̂k(t)〉c. (12)

As in [6], we search for the unperturbed propagatorG(0) with the form (11) under the existence
of the probing source: the source of (10) is constructed as to keep this structure [7].

Starting from (10), the unperturbed propagator is calculated from the relation∑
k′

Dk,k′(t, ∂t )G
(0)
k′,q(t, s) =

∑
k′
G
(0)
q,k′(t, s)Dk′,q(s,−

↼

∂ s) (13)

= −ih̄δk,qδ(t − s) (14)

where
↼

∂ is the differentiation acting to the left. Assuming that G(0) has the same structure
as (11) in which h and k are replaced by h(0) and k(0), respectively, equation (13) for t > s
leads to

(ih̄∂t − εk) h(0)k,q(t, s) = 0 (ih̄∂t − εk) k(0)k,q(t, s) = 0 (15)

and for s > t to

(ih̄∂t − εk) h(0)∗q,k (s, t) = i
∑
k′
Jk,k′(t)

{
h
(0)∗
q,k′ (s, t)− k(0)∗q,k′ (s, t)

}
(16)

(ih̄∂t − εk) k(0)∗q,k (s, t) = −i
∑
k′
Jk,k′(t)

{
h
(0)∗
q,k′ (s, t)− k(0)∗q,k′ (s, t)

}
(17)

with the boundary conditions at t = s given as

h
(0)
k,q(s, s)− h(0)∗q,k (s, s) = 0 h

(0)
k,q(s, s)− k(0)∗q,k (s, s) = −δk,q (18)

k
(0)
k,q(s, s)− k(0)∗q,k (s, s) = 0 k

(0)
k,q(s, s)− h(0)∗q,k (s, s) = δk,q. (19)

From the definition of z in (8) and from the conditions (18) and (19), we can write

h
(0)
k,q(s, s) = −z̄(0)k,q(s) k

(0)
k,q(s, s) = −z(0)k,q(s) (20)

where z(0)k,q is the unperturbed part of the correlation function (8) and z̄(0)k,q = z
(0)
k,q + δk,q. Note

that z∗q,k = zk,q holds since ρ̂ is Hermitian.
Equations in (15) can be solved with the results

h
(0)
k,q(t, s) = −e−iωk(t−s)z̄(0)k,q(s) (21)

k
(0)
k,q(t, s) = −e−iωk(t−s)z(0)k,q(s) (22)
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k

q Figure 1. Diagram for the first-order contributions to zk,q[J ].

for t > s, where ωk ≡ εk/h̄. Then h(0)∗q,k (s, t) and k(0)∗q,k (s, t) are obtained for s > t by
exchanging t,k and s, q in the complex conjugations of (21) and (22). Substituting them
into (16) or (17), the two equations turn out to be identical, and lead to the EoM of z(0)k,q:

Jk,q(t) = {
h̄∂t + i(εk − εq)

}
z
(0)
k,q(t). (23)

This can be solved as

z
(0)
k,q [t; J ] = e−i(ωk−ωq)(t−s)z(0)k,q(tI) +

1

h̄

∫ t

tI

ds e−i(ωk−ωq)(t−s)Jk,q(s) (24)

and gives the expression of z as a functional of J in the zeroth order of the interaction. Thus
equations (21), (22) and (24) determine the unperturbed propagator G(0) if we substitute h(0)

and k(0) into (11) in place of h and k, respectively. Equation (24) corresponds to f0[t; J ] of (1),
and (23) to the inversion (2). Note that, although (22) and (21) have similar form to the GKB
ansatz, they are derived without any ad hoc assumption.

3.3. First-order correction: mean-field effect

With the propagator −G(0) expressed by the arrow going from ψ∗ to ψ and the vertex ±λ/ih̄
(the signs + and − respectively correspond to the forward and backward time-path), the first-
order correction z(1) is represented by the tadpole-type diagram shown in figure 1 and calculated
as

z
(1)
k,q(t) = λ

ih̄

∑
q′,k′,m

∫ t

tI

ds e−i(ωk−ωq)(t−s)
{
z̄
(0)
k,k′z

(0)∗
q,q′ z

(0)∗
m−k′,m−q′ − z(0)k,k′ z̄

(0)∗
q,q′ z

(0)∗
m−k′,m−q′

}
(s) (25)

= λ

ih̄

∑
q′,m

∫ t

tI

ds e−i(ωk−ωq)(t−s)
{
z
(0)∗
q,q′ z

(0)∗
m−k,m−q′ − z(0)k,q′z

(0)∗
m−q′,m−q

}
(s). (26)

In the second equality, the summation index k′ is changed into q′ for the second term of the
integrand. Note that this is a functional of J since the z(0)s in the rhs are the functionals given
in (24).

With the inversion formula (3), equation (23) receives the correction up to the first order
of interaction as

Jk,q(t) = {
h̄∂t + i(εk − εq)

}
zk,q(t) + iλ

∑
q′,m

{
z∗q,q′z

∗
m−k,m−q′ − zk,q′zm−q,m−q′

}
(t). (27)

This can be written in terms of the WDF with the use of (8), and by removing the source the
EoM of the WDF with the correction of O(λ) is obtained as{
h̄∂t + i(εk − εq)

} ∫
dx e−i�k·xfK(x, t)

= − iλ
∑
q′

∫
dx1dx2

{
ei(q−q′)·x1+(q′−k)·x2f q+q′

2
(x1, t)n(x2, t)

−e−i(k−q′)·x1+(q′−q)·x2f k+q′
2
(x1, t)n(x2, t)

}
(28)
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where K = (k + q)/2,�k = k − q and n(x) = ∑
k fk(x) is the local particle density, which

is produced after the summation over m in (27).
The kinetic equation (28) is reduced to a more familiar form by the gradient expansion.

It is expected that the summation over q′ in (28) will provide the spatial decay with some
characteristic length. Then if the spatial variation of the WDF has much longer scale than the
characteristic length, we can expand the WDF in (28) around X = (x1 + x2)/2 in powers of
�x = x1 − x2, and take the terms up to the first order in the gradient. Then the rhs of (28)
becomes

−iλ
∑
q′

∫
dX d�x

{
e−i{�k·X−(K−q′)·�x }

(
f q+q′

2
(X, t)

(
1 − �x

2
· ↔
∂X

)
n(X, t)

)

−e−i{�k·X+(K−q′)·�x }
(
f k+q′

2
(X, t)

(
1 − �x

2
· ↔
∂X

)
n(X, t)

)}

= − iλV
∫

dX e−i�k·X
{(
fK−�k

4
− fK+�k

4

)
n

+
i

4
∂K ·

((
fK−�k

4
+ fK+�k

4

) ↔
∂X n

)}
(29)

where
↔
∂X is defined by ξ

↔
∂X η = ξ(∂Xη)−(∂Xξ)η, and in the equality of (29), the integration

over �x is first carried out and then the summation over q′.
Then we carry out the expansion around�k = 0 and take up to the first order of ∂X after

the partial integration. This produces terms proportional to (∂K ·∂Xf )n and to (∂Kf ) · (∂Xn),
but the former contributions from the first and second terms in the curly brackets of (29) cancel
each other and only the latter terms remain. As a result, equation (28) is reduced to

{
∂t + v

g
K · ∂X

}
fK(X, t) = λV

h̄
(∂Xn(X, t)) · ∂KfK(X, t) (30)

where the group velocity is defined by v
g
K = ∂KεK/h̄. The rhs of (30) is the first-order

correction of the gradient expansion, and apparently it expresses the effect of the mean-field
potential force. In the literature (e.g. [1]), the mean-field potential is usually included in
the effective one-particle energy, but in our case, since the one-particle energy ε is position
independent, the mean-field potential term appears as in (30).

3.4. Second-order correction: collision term

The second-order corrections to zk,q come from the diagram shown in figure 2(a) and from
those with tadpoles given in figures 2(b) and (c). The diagrams with tadpoles, however, vanish
after the inversion; in the inversion formula (4), the tadpole contributions to f2 compensate for
the f (1)1 g1. Thus the diagram in figure 2(a) is sufficient for the purpose of deriving the EoM,
and is evaluated as

z
(2)
k,q[t; J ] = 1

2

(
λ

h̄

)2 ∑
l,m

∫ t

tI

ds e−i(ωk−ωq)(t−s)

×
∫ t

tI

ds ′
{

eiω(2)q,k,l,m(s−s ′)Z̃(2)q,k,l,m(s
′) + e−iω(2)k,q,l,m(s−s ′)Z̃(2)∗k,q,l,m(s

′)
}

(31)

where ω(2)q,k,l,m ≡ ωq + ωm−k − ωl − ωm−l and Z̃(2) is defined as
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k

q

(a) (b) (c)

k

q k

q

Figure 2. Diagrams for O(λ2) contributions to zk,q[J ].

Z̃
(2)
q,k,l,m ≡

∑
q′,l′,m′

{
z̄
(0)∗
q,q′ z̄

(0)∗
m−k,m′−q′z

(0)
l,l′z

(0)
m−l,m′−l′ −z(0)∗q,q′ z

(0)∗
m−k,m′−q′ z̄

(0)
l,l′ z̄

(0)
m−l,m′−l′

}
. (32)

By the second-order inversion formula (4), the O(λ2) correction to (27) is derived.
Since (24) is linear in J , f (2)0 in (4) vanishes, and, as mentioned above, the contributions
from f (1)1 g1 cancel with diagrams (b) and (c) in figure 2. Thus the EoM of z becomes

∂tzk,q(t) = εk − εq
ih̄

zk,q(t) +
λ

ih̄

∑
q′,m

{
z∗q,q′z

∗
m−k,m−q′ − zk,q′zm−q,m−q′

}
(t)

+
1

2

(
λ

h̄

)2 ∑
l,m

∫ t

tI

ds
{

eiω(2)q,k,l,m(t−s)Z(2)q,k,l,m(s) + e−iω(2)k,q,l,m(t−s)Z(2)∗k,q,l,m(s)
}

(33)

whereZ(2) is obtained from Z̃(2) by replacing z(0)[J ] in (32) with z. A similar (but Markovian)
equation is obtained in [8] and ours is the non-Markovian extension of it.

Substituting (8) into (33), we obtain the EoM of the WDF with the second-order correction.
Although the Born approximation in the case of the local interaction (6) is considered here, the
obtained equation reveals the collision term, which is non-local in the WDF. This is just due to
the fact that the non-local information is required in (7) to determine the WDF. A similar type
of non-locality appears in [13, 14], where the density operator formalism is used, and in [8].

As in section 3.3, we can carry out the gradient expansion in the weakly inhomogeneous
case. For example inZ, consider the term corresponding to the first term of (32). By rearranging
the summation for �m = m − m′ and �l = l − l′, it is expressed as∫

dx1dx2 dy1 dy2

∑
q′,�l,�m

ei(�m−�k)·X−i( �m
2 −K+q′)·�xf̄ q+q′

2
(x1)f̄m−�m+k+q′

2
(x2)

×e−i�m·Y +i( �m
2 −�l)·�yfl−�l

2
(y1)fm−l−�m−�l

2
(y2)

� V 2
∫

dXdY
∑
�m

ei(�m−�k)·X

×
{
f̄K+�k−�m

4

(
1 − i

4

↔
∂ x · ↔

∂ k

)
f̄m−K+�k−�m

4

}
(X)

×e−i�m·Y
{
fl−�m

4

(
1 +

i

4

↔
∂ x · ↔

∂ k

)
fm−l−�m

4

}
(Y ) (34)

where f̄ = f + 1/V and X, �x and Y , �y are the centre and relative coordinates of x1, x2

and y1, y2, respectively. The abbreviation ∂x∂kfK(X) = ∂x∂kfk(x) |x=X,k=K is also used.
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Expanding again around X̄ = (X + Y )/2, the rhs of (34) up to the first order in the
gradient becomes

V 3
∫

dX̄ e−i�k·X̄ {f̄K f̄m−Kflfm−l + iy
(
f̄K, f̄m−K, fl, fm−l

) }
(X̄) (35)

where the gradient correction y is given as

y
(
f̄k, f̄k′ , fq, fq′

) ≡ 1
4

{(
f̄k

↔
∂ x · ↔

∂ k f̄k′
)
fqfq′ − f̄kf̄k′

(
fq

↔
∂ x · ↔

∂ k fq′
)

+ (∂xf̄kf̄k′) · (∂kfqfq′)− (∂kf̄kf̄k′) · (∂xfqfq′)− 2(∂x · ∂kf̄kf̄k′)fqfq′
}
.

(36)

The other terms in the last term of (33) can be processed in the same way, and the gradient
expansion of the last term of (33) yields

λ2V 3

h̄

∑
l,m

∫ t

tI

ds
∫

dX e
−i�k·

{
X+v

(2)
K,m−K (t−s)

}(
cos

{
ω
(2)
K,K,l,m(t − s)

}
F
(2)
K,l,m(X, s)

+ sin
{
ω
(2)
K,K,l,m(t − s)

}
Y
(2)
K,l,m(X, s)

)
. (37)

Here v
(2)
K,m−K = (vg

K + v
g
m−K)/2 appears from the expansion of ω(2)k,q,l,m, and

F
(2)
K,l,m ≡ f̄K f̄m−Kflfm−l − fKfm−K f̄lf̄m−l (38)

Y
(2)
K,l,m ≡ y (f̄K, f̄m−K, fl, fm−l

)− y (fK, fm−K, f̄l, f̄m−l

)
. (39)

Combining (37) with (30), we obtain the QKE in the approximation of second order in
the perturbation and first order in the gradient expansion as(
∂t + v

g
K · ∂X − λV

h̄
(∂Xn) · ∂K

)
fK(X, t)

= λ2V 3

h̄

∑
l,m

∫ t

tI

ds

{
cos

{
ω
(2)
K,K,l,m(t − s)

}
F
(2)
K,l,m(X − v

(2)
K,m−K(t − s), s)

+ sin
{
ω
(2)
K,K,l,m(t − s)

}
Y
(2)
K,l,m(X − v

(2)
K,m−K(t − s), s)

}
. (40)

Even after the gradient expansion, we can see the non-local contribution of the collision: the
collision itself occurs locally but its contribution F (2)K,l,m drifts with velocity v

(2)
K,m−K into the

remote WDF. In order to reduce (40) to the Markovian QKE, the adiabatic expansion is carried
out. Assuming the time variation of F (2) and Y (2) to be small compared with the decay due
to the summation over l,m in (40), we expand them around the time t and integrate over s.
Thus the adiabatic expansion of the rhs of (40) yields

λ2V 3

h̄

∑
l,m

{(
πδ(ω

(2)
K,K,l,m) +

℘

(ω
(2)
K,K,l,m)

2

(
∂t + v

(2)
K,m−K · ∂X

))
F
(2)
K,l,m(X, t)

−
(

℘

ω
(2)
K,K,l,m

− δ′(ω(2)K,K,l,m)
(
∂t + v

(2)
K,m−K · ∂X

))
Y
(2)
K,l,m(X, t)

}
. (41)

The drift of F (2) and Y (2) will be seen from the operation (∂t + v(2) · ∂X). The drift of Y (2),
however, becomes higher order in gradient and will be neglected. If we take only the energy
conserving term δ(ω(2))F (2), equation (40) is reduced to the usual Boltzmann equation. A
similar expression of the collision integral is obtained in [13], but the drift of the collision
term is not considered there because only the leading order of the Markovian approximation
is taken.
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4. Conservation laws

In the field of kinetic theory, it is important to show that the conservation laws are kept by
the obtained kinetic equation. Usually the local conservation laws are derived by making the
time derivative of the conserved quantities into the form of the gradient [13,14], but, since we
have the Lagrangian, the conserved currents can directly be derived from the symmetries of
the Lagrangian with the use of Noether’s theorem. The currents thus derived are expressed as
functionals of z and the conservation laws are explicitly confirmed by QKE (33).

4.1. Local conservation of number density

For definiteness, we choose the dispersion relation εk = h̄2k2/2m in this section. From (6),
the Lagrangian density is given in this case as

L(x) = ih̄

2
ψ̂†(x)

↔
∂ t ψ̂(x)− h̄2

2m
∂xψ̂

†(x) · ∂xψ̂(x)− λV

4
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (42)

Then from the invariance under the global phase shift of the field, the Noether theorem
gives us the conserved current

j0(x) =
〈
ψ̂†(x)ψ̂(x)

〉
(43)

=
∑
k,q

zk,q
ei(k−q)·x

V
=
∑
K

fK(x) = n(x) (44)

j(x) = − ih̄

2m

{〈
ψ̂†(x)∂xψ̂(x)

〉
−
〈
(∂xψ̂

†(x))ψ̂(x)
〉 }

(45)

= h̄

2m

∑
k,q

(k + q)zk,q
ei(k−q)·x

V
=
∑
K

v
g
KfK(x) (46)

which satisfies ∂µjµ = ∂tj0 + ∂x · j = 0, i.e. the local conservation of the particle density. As
shown in (44) and (46), this current can simply be expressed as a function of the WDF since
it involves no interaction contribution.

The conservation relation can explicitly be checked using the kinetic equation (33).
From (33), the time derivative of the number density (44) is rewritten as

∂tn(x) =
∑
k,q

εk − εq
ih̄

zk,q
ei(k−q)·x

V
(47)

= −
∑
k,q

i(k − q) · v
g
k+q

2

zk,q
ei(k−q)·x

V
= −∂x · j(x) (48)

and thus the local conservation of the number density is confirmed. In the rhs of (47), the terms
from the first- and second-order corrections in (33) vanish by symmetry after the summation
over k and q.

4.2. Conservation of energy and momentum densities

Applying the Noether theorem to the invariance under the translation in space and time, the
energy–momentum tensor satisfying ∂νTµν = 0 is obtained as

T00 = ih̄

2

〈
ψ̂†(x)

↔
∂ t ψ̂(x)

〉
− 〈 L(x) 〉 = ε (49)
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T0i = − h̄
2

2m

(〈
(∂t ψ̂

†(x))∂iψ̂(x)
〉

+
〈
(∂iψ̂

†(x))∂t ψ̂(x)
〉)

= jε,i (50)

Ti0 = ih̄

2

〈
ψ̂†(x)

↔
∂ i ψ̂(x)

〉
= −Pi (51)

Tij = − h̄
2

2m

(〈
(∂iψ̂

†(x))∂j ψ̂(x)
〉

+
〈
(∂j ψ̂

†(x))∂iψ̂(x)
〉)

− δij 〈 L(x) 〉 = −Qij (52)

where ε and P are the energy and momentum densities, respectively, while jε and Q are
corresponding currents.

With the use of Fourier transformation, the momentum density can simply be expressed
as a function of z:

P (x) =
∑
k,q

h̄
k + q

2
zk,qei(k−q)·x =

∑
K

h̄KfK(x) (53)

but the energy density and the currents receive the interaction contributions and are written as

ε(x) =
∑
k,q

ei(k−q)·x

V

(
h̄2

2m
(k · q)zk,q +

∑
l,m

λ

4

〈
ψ̂

†
q−mψ̂

†
mψ̂k−lψ̂l

〉)
(54)

jε(x) = h̄2

2im

∑
k,q

ei(k−q)·x

V

{
k
〈
(∂t ψ̂

†
q )ψ̂k

〉
− q

〈
ψ̂†

q ∂t ψ̂k

〉 }
(55)

Q(x) =
∑
k,q

ei(k−q)·x

V

{
h̄2

2m
(q ⊗ k + k ⊗ q) zk,q +

ih̄

2
I
〈
ψ̂†

q

↔
∂ t ψ̂k

〉 }
− Iε(x) (56)

where (a ⊗ b)ij = aibj and I is a unit tensor. Using the relation〈
ψ̂†

q ∂t ψ̂k

〉
=
〈
(∂t ψ̂

†
k )ψ̂q

〉∗
= εk

ih̄
zk,q +

λ

2ih̄

∑
l,m

〈
ψ̂†

q ψ̂
†
l ψ̂k+mψ̂l−m

〉
(57)

which is obtained from the exact EoM of the field operator, the currents (55) and (56) become

jε(x) = h̄2

2m

∑
k,q

ei(k−q)·x

V

{
h̄

2m

(
q2k + k2q

)
zk,q +

∑
l,m

λ

2h̄
(l + m)

〈
ψ̂

†
q−mψ̂

†
mψ̂k−lψ̂l

〉 }

(58)

Q(x) =
∑
k,q

ei(k−q)·x

V

(
h̄2

2m

{
q ⊗ k + k ⊗ q + I (k − q)2

2

}
zk,q

+
∑
l,m

λ

4
I
〈
ψ̂

†
q−mψ̂

†
mψ̂k−lψ̂l

〉)
. (59)

In order to express the energy density (54) and the currents (58) and (59) as functionals
of the WDF, the four-point function must be written in terms of z. For this, the four-point
function is first calculated as a functional of J by a perturbation expansion with the propagator
derived in section 3.2, and then the functional is evaluated at J = J [z] using the inverted
relation, equation (27) with the last term in (33) subtracted and multiplied by h̄. Thus after
some calculations, equations (54), (58) and (59) up to O(λ) yield

ε(x) =
∑
K

h̄2

2m

(
K2 +

�
4

)
fK(x) +

λV

2
n2(x) (60)

jε(x) =
∑
K

h̄2

2m

{(
K2 − �

4

)
v

g
K +

1

2
(v

g
K · ∂x)∂x

}
fK(x) + λV n(x)j(x) (61)
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Q(x) =
∑
K

{
h̄K ⊗ v

g
K +

h̄2

4m
(∂x ⊗ ∂x − I�)

}
fK(x) +

λV

2
n2(x)I (62)

where j is the number current defined in (45).
The second-order corrections to these quantities become somewhat complicated and

cannot be expressed by local functions of the WDF. Similarly as in section 3.4, the tadpole-
diagram contributions to the four-point function cancel with contributions from the perturbative
corrections of J [z]. Only the non-tadpole diagrams are retained, and they are evaluated at
lowest-order J [z], i.e. equation (23) in which z(0)s are replaced by zs. Hence the second-order
corrections can be written as

ε(2)(x) = iλ2

4h̄

∑
k,q,l,m

ei(k−q)·x

V

∫ t

tI

ds eiω(2)q,k,l,m(t−s)Z(2)q,k,l,m(s) (63)

j(2)ε (x) = i

4

(
λ

h̄

)2 ∑
k,q,l,m

ei(k−q)·x

V

h̄

m
(q + l)

∫ t

tI

ds eiω(2)q,k,l,m(t−s)Z(2)q,k,l,m(s) (64)

Q(2)(x) = ε(2)(x)I. (65)

These corrections (63)–(65) can be rewritten in terms of the WDF by (8), but such expressions
seem to be of little use.

Though the calculations are tedious, it is not difficult to see that the above-derived currents
satisfy the local conservation laws via the QKE (33). From (53), (60) and (63), the time
derivatives of densities can be calculated by the use of (33), and the divergences of currents are
from (61), (62), (64) and (65). After some relabelling of the summation indices, in each order
of the perturbation, we can make the divergences of momentum and energy currents precisely
the negative of the time derivatives of the corresponding densities.

The above order-by-order realization of the conservation is not a trivial result from the
Noether theorem. As pointed out in [9,10], the process of inversion is non-perturbative and the
diagrams taken into account by the inversion depend on how the source is introduced. Hence
the QKE has different forms for different sources [7]. Of course in the full-order calculation, the
conservation laws must be recovered whatever the source is, but in the finite-order calculation,
the order-by-order conservation is not generally realized.

5. Discussions

We have derived the QKE in the case of the inhomogeneous initial condition. The inversion
method in [6] was utilized and the main result is the QKE (33), which is non-local in the WDF
and non-Markovian. The non-local feature of the QKE is taken into account in [13,14] by the
operator formalism or in [8] by the counter-term method, but the non-Markovian property is
not considered therein. As the result, the Markovian approximation of the QKE reveals a new
feature: the drift in the collision term. The higher-order corrections and the effect of the initial
correlations can be incorporated in the same way as in [7], and, if we go beyond the perturbation
theory, the T -matrix approximation or the dynamical screening will be incorporated similarly
as in the GKB formalism.

As shown in section 3, we have just calculated the (Fourier transform of the) WDF and
no ansatz on the form of the Green function is required. Moreover, the advantage of using
the inversion method can also be seen in the derivation of conservation laws in section 4. The
evaluation of the conserved current can be carried out quite systematically: The current first
calculated as a functional of source J is written in terms of the WDF z or f by evaluating the
functional at J = J [z], i.e. the inverted relation. Thus the vanishing of the tadpole contribution
to the currents is automatic in our formalism, while it will not be in the GKB formalism.
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As mentioned in section 3.4, we can explicitly show that the second-order diagrams with
tadpoles vanish after the inversion. This fact suggests that some of the diagrams for z[J ] can
be eliminated if our interest is in the inverted relation. Moreover, as pointed out above, the
four-point functions in the conserved currents can be calculated as functionals of z from the
diagrams without tadpoles in which the source J is evaluated at the lowest order of inversion
J [z]. This suggests that the expectation value of a physical quantity is expressed as a functional
of z by discarding some part of the diagrams. Such properties are investigated in the case of a
normal probing source [10, 15, 16], and it is known that the modified two-particle irreducible
diagrams are enough when a composite two-particle operator is probed [16]. The diagrammatic
discussion using our extended probing source is under construction.
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